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LETTER TO THE EDITOR 

A novel 15-vertex solution of the Sutherland equation 

Bernd Golzer 
Fachrichtung 11.1-Theoretische Physik, Universitat des Saarlandes, D-6600 Saarbrucken, 
Federal Republic of Germany 

Received 10 August 1988 

Abstract. The Sutherland equation, implying exact integrability of vertex models, is studied 
on a two-dimensional square lattice. A novel 15-vertex solution commuting with a spin-1 
Hamiltonian is constructed. 

In the theory of exactly soluble models in statistical physics specific significance has 
been attributed to solutions of the equation 

[A,A,+I, H n , n + J =  B,A,+l - A,B,+l * (1) 
Equation (1) will be called the Sutherland equation throughout this letter. This equation 
(Sutherland 1970) is the local condition for a transfer matrix T = Tr II,,A, of a vertex 
model on a planar lattice to commute with the Hamilton operator %= Z, H,,n+l of a 
one-dimensional spin chain with nearest-neighbour interaction, i.e. that 

[T ,X ]=O (2) 

holds. 
Equation (2) ensures that T and 2t have a common system of eigenfunctions. Apart 

from some trivial cases these are generalised Bethe ansatz eigenfunctions for all 
solutions studied below. A set of operators { A , ,  B,, H,, ,+ l }  satisfying equation (1) 
will be called a solution of the Sutherland equation. Four different solutions have 
been reported for matrix dimension two (Kasteleyn 1975). These four solutions 
represent some of the most thoroughly studied models in two-dimensional statistical 
mechanics; briefly they are: 

(i)  the free-fermion vertex model commuting with the X Y  Hamiltonian; 
(ii) the general six-vertex model commuting with the X X Z  Hamiltonian with an 

(iii) the symmetric eight-vertex model commuting with the X Y Z  Hamiltonian; 
(iv) a certain trivial vertex model ( w5 = w6 = w, = w8 and w,  = w4,  w2 = w7 or w1 = wj, 

w2 = w4) of an essentially one-dimensional nature commuting with the isotropic Heisen- 
berg Hamiltonian. 

These cases exhaust all solutions of matrix dimension two, i.e. up to eight-vertex 
models. In this work I report a study of matrix dimension three which provides novel 
solutions of the Sutherland equation of the 15-vertex type and commuting with spin-1 
(or three-component) Hamiltonians. 

As is well known, there is an isomorphy between the local vertex operator A,, (also 
called the local L operator) of a vertex model and factorised relativistic S matrices of 
(1 + 1)-dimensional quantum field theories (Zamoladchikov 1979). Accordingly explicit 

additional non-Hermitian term; 
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realisations of such 15-vertex type solutions are provided by the factorised S matrices 
of Cherednik (1980) and those studied in a series of papers by Babelon, de Vega and 
Viallet (Babelon et a1 1981, 1982, 1983a, 1983b, de Vega 1985, 1987). 

In order to find operators A,, B,, and H,,,+l satisfying equation ( l ) ,  I proceed in 
the following manner. A, is the local vertex operator, arising originally in the calcula- 
tion of the partition function 

Z = T r ( T M ) = T r  T r n A ,  . (3) (( n )") 
In the notation of de Vega (1985) and Takhtajan (1985) A,, is defined by 

(An)ah = E  A,,bElj"' 
ij 

where E?)  is a matrix of the canonical basis of R D  x R D  and 

(4) 

is the Boltzmann weight of a vertex -. 
at site n of the lattice. D is 'the number of inner degrees of freedom and generalising 
the eight-vertex rule, only vertices with an even number of states of each type 
(0, 1,2, .  . . , D- 1) are admitted. 

For D = 2, the eight vertices are labelled as usual: 

W1 w 2  w 3  w 4  w 5  W6 w 7  W8 

and for D = 3 there are, in addition, the following new vertices: 

2 1 1 2  0 1: 0 2 1:: 0 1 p 2  2 1: 0 0 I 2  

2 2 w 3 1  WL 1 w 5 1  w6 1 W l 1  w81 

w311 W L l l  w511 w611 w711 

Accordingly, there are altogether 21 different vertices for D = 3: 

All,11 = WI 4 0 , o o  = w2 A22,22 = w1i 

4 0 J l  = w3 ' 4 0 . 2 2  = w31 All,,, = w3lI 

A11,oo = w4 A22.00 = w4i A22,11 = w411 

4 1 . 1 0  = ws 4 2 , 2 0  = WSl A12,21 = ws11 

Al0,Ol = w6 A20,02 = w61 A21,12 = w611 

AlO.10 = w7 A20,20 = w71 A21,21 = w711 

& l , O l  = w8 4 2 , 0 2  = w8l A12,12 = w811 * 
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For the sake of simplicity, I set w7 = w8 = ~ 7 1  = wSl  = w 7 I l =  wSl l  = 0, leaving 15 different 
non-zero vertex weights w1 , . . . , w611. 

Starting from the observation that the stronger local condition 

[AflA,+l, Hfl,fl+ll = 0 ( 6 )  

has only trivial solutions, a set {B , }  of auxiliary operators, to be determined in the 
course of the calculation, is introduced. Taking the trace of equation (1) imposes the 
following conditions on the B, : 

0 = Tr(B,An+ 1 - A,Bn+l) 

(BXAJ,’+l -AXB$+l). (7) , 
Hence the proper choice for B, is B: -AX implying that the quantity within brackets 
in ( 7 )  vanishes. 

In the next step a suitable ansatz for the local interaction H,,,+l will be given. 
Having represented A,  and Bn in the canonical basis E,, it will be convenient to write 
H,,,+l in this basis, too: 

Obviously, any other basis will serve as well. For instance, one may use for D = 2 the 
three Pauli matrices and the unit matrix, and for D = 3 the eight SU(3) generators 
supplemented by the unit matrix, or equivalently three matrices belonging to the spin-1 
representation of S U ( 2 )  together with six tensor matrices. I will calculate the anisotropy 
coefficients A,,kl in the canonical basis and present the result also in an SU(3) basis. 

Substituting ( 4 )  and ( 8 )  into ( l ) ,  one obtains the following system of equations for 
the unknown coefficients BIJ,ab  and A,,,kl: 

D c [A(s,, 4 s z , f ) A ( c ,  S I ,  a, s , )A(e,  s2, s3, b )  
SI,SzrS3=O 

-A(c, S I ,  e, SZ)A(SI, 4 a, S3)A(Sz,.L s3, b)l  

This is a Yang-Baxter type system of Dh equations for (at most) 3D4 unknowns. I 
recall that the so-called Yang-Baxter or star-triangle equation is the local condition 
for different transfer matrices to commute 

[T ,  T’]=O (10 )  

and results in a similar system of equations for the corresponding coefficients, represent- 
ing likewise Dh equations for 3D4 unknowns (cf equation (9.6.8) of Baxter (1982) ) .  
A closer examination of ( 9 )  reveals that at least some of its solutions are also solutions 
of the Yang-Baxter equation and vice versa, so presumably ( 9 )  is related to the 
Yang-Baxter equation by some algebraic transformations. I will leave this conjecture 
open for further studies and proceed with the solution of the system of equations ( 9 ) .  

Recall that the complete solution for 0 = 2  (64 equations) has been given by 
Kasteleyn (1975). For 0 = 3 (729 equations) a geometrically motivated simplification 
will be introduced. The choice 

Al,,ki = a $ k i A l i , k k  + at ia ,kAIJJz  + SzkaJiAIJ,V - 2fjlraki~lkAIl,rl (11 )  
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leaves only 21 A, ,k l  different from zero and allows the formal identification of each 
A,,$/ with an admissible vertex. If, furthermore, the resulting Hamiltonian 
will be Hermitian. 

Note that equations (9) are linear in the auxiliary quantities Bf,,a'h and in the 
anisotropies but non-linear in the vertex weights A,,,,,. Accordingly, first all By,ab 
and then all Ay,&, can be eliminated, leaving a set of non-linear relations between the 
vertex weights All,abt. 

It results that under the above provisos and after proper elimination of the By,ab 
and the A y , k l ,  the 15-vertex solution requires the Ay,ab to satisfy the following six quartic 
relations: 

w41 w31 w61 1 w51  1 = w41 1 w31  1 w61 w 5 1  

w4w3w61 1 w511 = w411 w31 I w6w5 

w4w3w61 w51 = w41 w31 w6w5 

= ( 

(12a) 

(12b) 

(12c) 

(12d) 

(12e) 

w i w 6 1 1  w51 1 - w2 w6 w61 1 w51 - w2 w61 w5w51 1 - Wqw3 W6l w 5 1  + w6w5w61 W5l  = 

w f W 6 l  w5l - wl w5w61 w511 - w l  w 5 1  w6w61 1 -_ w4w3w611 w51 1 + w6w5w61 1 w511 = 

d I w 6 w 5  - w l l  w5w61 w511 - w l l  w6w51 W611 - w41 w31 w611 w511 + w61 w51  w611 w 5 1  1 = (12f) 

Every 15-vertex model fulfilling these relations commutes with a certain Hamiltonian, 
characterised by the following anisotropies: 

A l = A i i , i i =  c + w 6 1 w 5 l w I x  A 2  A00,OO = c + w611w511 w2x 

A ?  Aoo,ll = C + ~ ' 6 w 5 1 w 6 l l x  A 4 ~ A l l , 0 0 =  c+w5w61w511x 

A 5  A O l , l O  = w4w61 w51x A 6 =  Aio,oi  = w 3 w 6 1 l w 5 1 I x  

A 11 e A22,22 = 2s - c + ( w41 w3l w611 w511 - w 6 l  w5l w 6 l l  w511 )x/ wll 

A31 = A00,22 = arbitrary A41 A22,oo z r  2 s  - A31 (13) 

E Ao2,zo = w 4 1  w 6 w 5 x  A61 'A20,02= ~ l l ~ 6 1 1 w 5 1 1 x  

A311 A11,12= A 3 1  A411 A22,11= A41 

A511 E A12.21 = w 4 1 1 w 6 w s X  A611 A21,12 = w311 w61 w 5 1 x  

A 7 1 1 = A 7 1  = A 7 = 0  

A811 = = h8=O 

(or A21,2l = A20,20 = A l 0 , l O  = 0) 

(or A12,12 = A02,02 = A O l , O l  = 0). 

X ,  C, S and A 3 1  are arbitrary, representing, respectively, an additive and a multiplicative 
constant in the Hamiltonian and two free parameters. 

The symmetries of Hamiltonian (8) with the coefficients (13) become more apparent 
in a basis formed by the eight SU(3) generators TI , .  . . , T8 and the unit matrix To. 
Here one has 

t These cumbersome calculations were done with the algebraic program REDUCE on the SUN workstation 
of the Mathematics Department of the Universitat des Saarlandes. 
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+ w51 w611 w6wl 1 + w611 w 5 ! l  w2wI 1 +4w611 w511w41 w31)/3wll. 

In geometrical language the 15 independent vertex weights span the unit cube in 
RI5 and the Sutherland equation is fulfilled on the hypersurface or hypersheaf defined 
by (12). It will be convenient to look at this hypersheaf along some diagonal cut. This 
is equivalent to imposing special symmetries to the vertex weights. I will give three 
examples, all of which may be considered as genuine extensions of the six-vertex model 
to the three-state case. 

(i) The solution with Z3 symmetry (A,J,kl = A,+n,J+n,k+n,l+n for n E Z,) is 

wl = w2= wl l  = A  w3 = w41= ~ 3 1  I = A, w4 = w31= w~~ = A4 

(ii) The solution with link-state symmetry is 

w 1 = w 2 =  w l l = A  ~ 3 = ~ 3 1 = ~ 3 1 l = A 3  w4 = w4] = will = A4 

W S  = w j l =  w S l l =  C5 w6= w61 = w611 = (26 (17) 
(A - C5) (A - c6) - A4A3 = 0. 

(ii) The solution of deVega (1987) is 

w l =  w2= w I l = A  

W S  = w51= w511= Cs 

w3 = w41 = w311 = A ,  w4= ~ 3 1 ~  w411= A4 

w6 = w61 = w611 = c6 (18) 
(A - Cs)(A - c6) - A4A3 = 0. 

Here the constraint equations result from (12) and define, respectively, a hypersur- 
face in the space of vertex weights. This should be included in the definition of the 
vertex weights by means of some suitable parametrisation. It turns out that for (16) 
the following parametrisation in terms of hyperbolic functions is appropriate: 

A = l  A4 = g- ' (  y)  sinh 8/sinh( 8 + y) 
Cs = exp( 8/3) sinh y/sinh( 8 + y)  

A, = g( y) sinh 8/sinh( 8 + y) 
c6 = exp(-8/3) sinh y/sinh( 8 + y ) .  
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In (17) and (18), we are left with a simple quadratic form and can thus transform to 
main axis and construct a parametrisation with four independent parameters 8, y, S 
and t :  

A = s+sinh(8+ y )  

A4 = sinh 8 (1 + sinh y sinh t )  

C5 = s+sinh y (cosh 8 +sinh 8 cosh t )  

or, using a restriction to a two-parameter submanifold with s = t = 0: 

A = l  

C, = ee sinh y/sinh( 8 + y )  

Both are also standard solutions of the parametrised Yang-Baxter equation (Cherednik 
1980, Kulish and Sklyanin 1982, deVega 1987, deVega and Karowski 1987), thus 
exhibiting once more the intimate connection between the Sutherland equation and 
the Yang-Baxter equation. The exact integrability follows at once, for, if 8 is a 
parameter along the hypersurface, and 

A3 = sinh 8 (1 -sinh y sinh t )  

C6 = s + sinh y (cosh 8 - sinh 8 cosh t )  

A3 = sinh 8/sinh( 8 + y )  A4 = sinh B/sinh( 8 + y )  

C6 = e-' sinh y/sinh( 8 + y ) .  

r T(B),  W 6 ' ) l =  0 

then there is an infinite number of integrals of motion 

for the Hamiltonian. 
In conclusion I have presented a new 15-vertex solution to the Sutherland equationt. 

Together with the known six- and eight-vertex solutions, this probably exhausts all 
solutions with up to 15 vertices. From the body of knowledge collected during recent 
years on the solutions of the parametrised Yang-Baxter equation (Belavin 1981, 
Bazhanov 1987, Akutsu and Wadati 1988), which are all parametrised by either (i) 
elliptic, (ii) trigonometric or hyperbolic, or (iii) rational functions, one might expect 
that this 15-vertex model corresponds to a 21-vertex model parametrised by elliptic 
functions at criticality. 

I would like to thank H Altpeter-Rub for an introduction to REDUCE and to the use 
of the SUN workstation, H-G Ruck and A Holz for helpful discussions and the latter 
also for a critical reading of the manuscript. 

References 

Akutsu Y and Wadati M 1988 Commun. Math. Phys. 117 243-59 
Babelon 0, de Vega H J and Viallet C M 1981 Nucl. Phys. B 190 542-52 
- 1982 Nucl. Phys. B 220 266-80 
- 1983a Nucl. Phys. B 220 13-34 
- 1983b Nucl. Phys. B 220 283-301 
Bamberg J and Schmitt H 1988 Solid State Ionics 26 303-6 

t The 15-vertex model can be used in a simulation of the order-disorder transition observed in hydrogen 
molybdenum bronze H,,,Mo03 (Bamberg and Schmitt 1988). 



Letter to the Editor L3 1 

Baxter R ’ J  1982 Exacfly Solued Models in Sfatisfical Mechanics (New York: Academic) 
Bazhanov V V 1987 Commun. Mafh.  Phys. 113 471-503 
Belavin A A 1981 Nucl. Phys. B 180 189-200 
Cherednik I V 1980 Teor. Mar. Fiz. 43 117-9 (1980 Theor. Math. Phys. 43 356) 
de Vega H J 1985 Preprinf LPTHE 85/54 
- 1987 J.  Phys. A: Mafh. Gen. 20 6023-6 
de Vega H J and Karowski M 1987 Nucl. Phys. B 280 225-54 
Kasteleyn P W 1975 Fundamental Problems in Stafistical Mechanics vol 3 ,  ed E G D Cohen (Amsterdam: 

Kulish P P and Sklyanin E K 1982 J.  Sou. Mafh .  19 1596-620 
Sutherland B 1970 J. Math. Phys. 11 3183-6 
Takhtajan L A 1985 Exactly Solvable Problems in Condensed Matter and Relafiuistic Field Theory (Lecture 

Zamolodchikov A B 1979 Commun. Math. Phys. 69 165-78 

North-Holland) 

Notes in Physics 242) ed B S Shastry, S S Jha and V Singh (Berlin: Springer) 


